Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Exp Cell Res ; 438(1): 114037, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631545

RESUMEN

Anoikis plays a crucial role in the progression, prognosis, and immune response of lung adenocarcinoma (LUAD). However, its specific impact on LUAD remains unclear. In this study, we investigated the intricate interplay of nesting apoptotic factors in LUAD. By analyzing nine key nesting apoptotic factors, we categorized LUAD patients into two distinct clusters. Further examination of immune cell profiles revealed that Cluster A exhibited greater infiltration of innate immune cells than did Cluster B. Additionally, we identified two genes closely associated with prognosis and developed a predictive model to differentiate patients based on molecular clusters. Our findings suggest that the loss of specific anoikis-related genes could significantly influence the prognosis, tumor microenvironment, and clinical features of LUAD patients. Furthermore, we validated the expression and functional roles of two pivotal prognostic genes, solute carrier family 2 member 1 (SLC2A1) and sphingosine kinase 1 (SPHK1), in regulating tumor cell viability, migration, apoptosis, and anoikis. These results offer valuable insights for future mechanistic investigations. In conclusion, this study provides new avenues for advancing our understanding of LUAD, improving prognostic assessments, and developing more effective immunotherapy strategies.


Asunto(s)
Adenocarcinoma del Pulmón , Anoicis , Neoplasias Pulmonares , Humanos , Anoicis/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino , Persona de Mediana Edad , Línea Celular Tumoral , Apoptosis/genética
2.
Med Sci Monit ; 30: e942687, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38439525

RESUMEN

BACKGROUND Sleep disorders are a common disease faced by people today and can lead to fatigue, lack of concentration, impaired memory, and even death. In recent years, the development of brain stimulation techniques has provided a new perspective for the treatment of sleep disorders. However, there is a lack of bibliometric analyses related to sleep disorders and brain stimulation techniques. Therefore, this study analyzed the application status and trend of brain stimulation technology in sleep disorder research. MATERIAL AND METHODS Articles and reviews published between 1999 and 2023 were retrieved from the Web of Science. CiteSpace was used to visually analyze the publications, countries, institutions, journals, authors, references, and keywords. RESULTS A total of 459 publications were obtained. The number of studies was shown to be on a general upward trend. The country with the largest number of publications was the United States; UDICE-French Research Universities had the highest number of publications; Neurology had the highest citation frequency; 90% of the top 10 references cited were from Journal Citation Reports Q1; Brigo was the author with the highest number of publications; and the most frequent keywords were "transcranial magnetic stimulation", "deep brain stimulation", and "Parkinson disease". CONCLUSIONS Our study used CiteSpace software to analyze 459 studies published since 1999 on brain stimulation techniques for the treatment of sleep disorders, revealing research trends and the current state of the field. Our results will help researchers to understand the existing research quickly and provide direction for future research.


Asunto(s)
Bibliometría , Trastornos del Sueño-Vigilia , Humanos , Fatiga , Trastornos del Sueño-Vigilia/terapia , Tecnología , Encéfalo
3.
Plant Cell Rep ; 43(1): 28, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177567

RESUMEN

KEY MESSAGE: The weighted gene co-expression network analysis and antisense oligonucleotide-mediated transient gene silencing revealed that CsAAP6 plays an important role in amino acid transport during tea shoot development. Nitrogen transport from source to sink is crucial for tea shoot growth and quality formation. Amino acid represents the major transport form of reduced nitrogen in the phloem between source and sink, but the molecular mechanism of amino acid transport from source leaves to new shoots is not yet clear. Therefore, the composition of metabolites in phloem exudates collected by the EDTA-facilitated method was analyzed through widely targeted metabolomics. A total of 326 metabolites were identified in the phloem exudates with the richest variety of amino acids and their derivatives (93), accounting for approximately 39.13% of the total metabolites. Moreover, through targeted metabolomics, it was found that the content of glutamine, glutamic acid, and theanine was the most abundant, and gradually increased with the development of new shoots. Meanwhile, transcriptome analysis suggested that the expression of amino acid transport genes changed significantly. The WGCNA analysis identified that the expression levels of CsAVT1, CsLHTL8, and CsAAP6 genes located in the MEterquoise module were positively correlated with the content of amino acids such as glutamine, glutamic acid, and theanine in phloem exudates. Reducing the CsAAP6 in mature leaves resulted in a significant decrease in the content of glutamic acid, aspartic acid, alanine, leucine, asparagine, glutamine, and arginine in the phloem exudates, indicating that CsAAP6 played an important role in the source to sink transport of amino acids in the phloem. The research results will provide the theoretical basis and genetic resources for the improvement of nitrogen use efficiency and tea quality.


Asunto(s)
Aminoácidos , Glutamina , Aminoácidos/metabolismo , Glutamatos/metabolismo , , Perfilación de la Expresión Génica , Nitrógeno/metabolismo
4.
Med Sci Monit ; 29: e941486, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37661601

RESUMEN

BACKGROUND Inspiratory muscle training (IMT) aims to train inspiratory muscles based mainly on the diaphragm by applying a load resistance during the inspiratory process. Many papers related to IMT have been published in various journals; however, no articles objectively and directly present the development trends and research hotspots of IMT. Therefore, this study used CiteSpace to visually analyze recent IMT-related publications to provide valuable information for future IMT-related studies. MATERIAL AND METHODS CiteSpace was applied to analyze the IMT-related publications by countries, institutions, journals, authors, references, and keywords. RESULTS We included 504 papers. The number of IMT-related publications trended upward between 2009 and 2022. Leuven had the highest number of publications by an institution. The American Journal of Respiratory and Critical Care Medicine was the most frequently co-cited journal. Half of the top 10 references cited were from Journal Citation Reports (JCR) Q1 and half were about the application of IMT in chronic obstructive pulmonary disorder. Gosselink was the author with the highest number of publications and Aldrich was the author with the highest co-citation frequency. The preponderance of studies on the surgical population and postoperative pulmonary complications reflects potential application of IMT in enhanced recovery after surgery. CONCLUSIONS This study provides scholars with important information related to IMT research. It analyzes IMT research trends and status, which can help researchers identify primary topics in the field and find ways to explore new research directions to promote the application of IMT in clinical practice and the cooperation of IMT-related disciplines.


Asunto(s)
Diafragma , Instituciones de Salud , Humanos , Modalidades de Fisioterapia , Complicaciones Posoperatorias , Periodo Posoperatorio
5.
Front Nutr ; 10: 1153983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969824

RESUMEN

Matcha has a unique aroma of seaweed-like, which is popular with Chinese consumers. In order to effectively understand and use matcha for drinks and tea products, we roundly analyzed the variation of main quality components of 11 matcha samples from different regions in the Chinese market. Most of matcha samples had lower ratio of tea polyphenols to amino acids (RTA), and the RTA of 9 samples of matcha was less than 10, which is beneficial to the formation of fresh and mellow taste of matcha. The total volatile compounds concentrations by HS-SPME were 1563.59 ~ 2754.09 mg/L, among which terpenoids, esters and alcohols were the top three volatile components. The total volatile compounds concentrations by SAFE was 1009.21 ~ 1661.98 mg/L, among which terpenoids, heterocyclic compounds and esters ranked the top three. The 147 volatile components with high concentration (>1 mg/L) and no difference between samples are the common odorants to the 11 samples of matcha. The 108 distinct odorants had differences among the matcha samples, which were important substances leading to the different aroma characteristics. Hierarchical cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) showed that 11 samples of matcha were well clustered according to different components. Japanese matcha (MT, MY, ML, MR, MJ) could be clustered into two categories. The aroma composition of Guizhou matcha (GM1, GM2) was similar to that of Japanese matcha, 45 volatile components (decanal, pyrazine, 3,5-diethyl-2-methyl-, 1-hexadecanol, etc. were its characteristic aroma components. The aroma characteristics of Shandong matcha and Japanese matcha (ML, MR, MJ) were similar, 15 volatile components (γ-terpinene, myrtenol, cis-3-hexenyl valerate, etc.) were its characteristic aroma components. While Jiangsu matcha and Zhejiang matcha have similar aroma characteristics due to 225 characteristic aroma components (coumarin, furan, 2-pentyl-, etc). In short, the difference of volatile components formed the regional flavor characteristics of matcha. This study clarified the compound basis of the flavor difference of matcha from different regions in the Chinese market, and provided a theoretical basis for the selection and application of matcha in drinks and tea products.

6.
Front Cell Infect Microbiol ; 13: 1112148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761896

RESUMEN

As the most common type of stroke, ischemic stroke, also known as cerebral infarction (CI), with its high mortality and disability rate, has placed a huge burden on social economy and public health. Treatment methods for CI mainly include thrombectomy, thrombolysis, drug therapy, and so on. However, these treatments have certain timeliness and different side effects. In recent years, the gut-brain axis has become a hot topic, and its role in nervous system diseases has been confirmed by increasing evidences. The intestinal microbiota, as an important part of the gut-brain axis, has a non-negligible impact on the progression of CI through mechanisms such as inflammatory response and damage-associated molecular patterns, and changes in the composition of intestinal microbiota can also serve as the basis for predicting CI. At the same time, the diagnosis of CI requires more high-throughput techniques, and the analysis method of metabolomics just fits this demand. This paper reviewed the changes of intestinal microbiota in patients within CI and the effects of the intestinal microbiota on the course of CI, and summarized the therapeutic methods of the intervention with the intestinal microbiota. Furthermore, metabolic changes of CI patients were also discussed to reveal the molecular characteristics of CI and to elucidate the potential pathologic pathway of its interference.


Asunto(s)
Microbioma Gastrointestinal , Accidente Cerebrovascular , Humanos , Microbioma Gastrointestinal/fisiología , Heces , Infarto Cerebral , Metaboloma , Trasplante de Microbiota Fecal
7.
Front Plant Sci ; 13: 1048442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531409

RESUMEN

Drought tolerance and quality stability are important indicators to evaluate the stress tolerance of tea germplasm resources. The traditional screening method of drought resistant germplasm is mainly to evaluate by detecting physiological and biochemical indicators of tea plants under drought stresses. However, the methods are not only time consuming but also destructive. In this study, hyperspectral images of tea drought phenotypes were obtained and modeled with related physiological indicators. The results showed that: (1) the information contents of malondialdehyde, soluble sugar and total polyphenol were 0.21, 0.209 and 0.227 respectively, and the drought tolerance coefficient (DTC) index of each tea variety was between 0.069 and 0.81; (2) the comprehensive drought tolerance of different varieties were (from strong to weak): QN36, SCZ, ZC108, JX, JGY, XY10, QN1, MS9, QN38, and QN21; (3) by using SVM, RF and PLSR to model DTC (drought tolerance coefficient) data, the best prediction model was selected as MSC-2D-UVE-SVM (R2 = 0.77, RMSE = 0.073, MAPE = 0.16) for drought tolerance of tea germplasm resources, named Tea-DTC model. Therefore, the Tea-DTC model based on hyperspectral machine-learning technology can be used as a new screening method for evaluating tea germplasm resources with drought tolerance.

8.
BMC Genomics ; 23(1): 667, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138347

RESUMEN

BACKGROUND: As a type of calmodulin binding protein, CAMTAs are widely involved in vegetative and reproductive processes as well as various hormonal and stress responses in plants. To study the functions of CAMTA genes in tea plants, we investigated bioinformatics analysis and performed qRT-PCR analysis of the CAMTA gene family by using the genomes of 'ShuChaZao' tea plant cultivar. RESULTS: In this study, 6 CsCAMTAs were identified from tea plant genome. Bioinformatics analysis results showed that all CsCAMTAs contained six highly conserved functional domains. Tissue-specific analysis results found that CsCAMTAs played great roles in mediating tea plant aging and flowering periods. Under hormone and abiotic stress conditions, most CsCAMTAs were upregulated at different time points under different treatment conditions. In addition, the expression levels of CsCAMTA1/3/4/6 were higher in cold-resistant cultivar 'LongJing43' than in the cold-susceptible cultivar 'DaMianBai' at cold acclimation stage, while CsCAMTA2/5 showed higher expression levels in 'DaMianBai' than in 'LongJing43' during entire cold acclimation periods. CONCLUSIONS: In brief, the present results revealed that CsCAMTAs played great roles in tea plant growth, development and stress responses, which laid the foundation for deeply exploring their molecular regulation mechanisms.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Camellia sinensis/metabolismo , Hormonas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Té/metabolismo
9.
Brain Sci ; 12(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36138990

RESUMEN

Aphemia is a rare and special type of speech disorder, and the mechanisms underlying the occurrence and recovery remain unclear. Here, we present a clinical case of poor spontaneous recovery of aphemia, with the anterior segment of the left arcuate fasciculus server damaged and the posterior segment intact, as detected by diffusion tensor imaging. Aphemia could be caused by the disruption of the cortical and subcortical language circuits. In particular, our data support the view that damage to the anterior segment of the left arcuate fasciculus may result in poor spontaneous recovery from speech production deficits and that an intact posterior segment seems to be crucial for supporting residual language comprehension ability in patients with post-stroke aphasia. Collectively, these data imply the importance of the left arcuate fasciculus during recovery from the language disorder in the subacute stage of stroke.

10.
Brain Sci ; 12(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35884714

RESUMEN

OBJECTIVE: To investigate the correlation between the left arcuate fasciculus (AF) segments and acute/subacute post-stroke aphasia (PSA). METHODS: Twenty-six patients underwent language assessment and MRI scanning. The integrity of the AF based on a three-segment model was evaluated using diffusion tensor imaging. All patients were classified into three groups according to the reconstruction of the left AF: completely reconstructed (group A, 8 cases), non-reconstructed (group B, 6 cases), and partially reconstructed (group C, 12 cases). The correlations and intergroup differences in language performance and diffusion indices were comprehensively estimated. RESULTS: A correlation analyses showed that the lesion load of the language areas and diffusion indices on the left AF posterior and long segments was significantly related to some language subsets, respectively. When controlled lesion load was variable, significant correlations between diffusion indices on the posterior and long segments and comprehension, repetition, naming, and aphasia quotient were retained. Multiple comparison tests revealed intergroup differences in diffusion indices on the left AF posterior and long segments, as well as these language subsets. No significant correlation was found between the anterior segment and language performance. CONCLUSIONS: The integrity of the left AF segments, particularly the posterior segment, is crucial for the residual comprehension and repetition abilities in individuals with acute/subacute PSA, and lesion load in cortical language areas is an important factor that should be taken into account when illustrating the contributions of damage to special fiber tracts to language impairments.

11.
Front Plant Sci ; 13: 943662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873958

RESUMEN

Light is an important environmental factor which affects plant growth, through changes of intensity and quality. In this study, monochromatic white (control), red (660 nm), and blue (430 nm) light-emitting diodes (LEDs) were used to treat tea short cuttings. The results showed the most adventitious roots in blue light treated tea cuttings, but the lowest roots in that treated by red light. In order to explore the molecular mechanism of light quality affecting adventitious root formation, we performed full-length transcriptome and metabolome analyses of mature leaves under three light qualities, and then conducted weighted gene co-expression network analysis (WGCNA). Phytohormone analysis showed that Indole-3-carboxylic acid (ICA), Abscisic acid (ABA), ABA-glucosyl ester (ABA-GE), trans-Zeatin (tZ), and Jasmonic acid (JA) contents in mature leaves under blue light were significantly higher than those under white and red light. A crosstalk regulatory network comprising 23 co-expression modules was successfully constructed. Among them, the "MEblue" module which had a highly positive correlation with ICA (R = 0.92, P = 4e-04). KEGG analysis showed that related genes were significantly enriched in the "Plant hormone signal transduction (ko04075)" pathway. YUC (a flavin-containing monooxygenase), AUX1, AUX/IAA, and ARF were identified as hub genes, and gene expression analysis showed that the expression levels of these hub genes under blue light were higher than those under white and red light. In addition, we also identified 6 auxin transport-related genes, including PIN1, PIN3, PIN4, PILS5, PILS6, and PILS7. Except PILS5, all of these genes showed the highest expression level under blue light. In conclusion, this study elucidated the molecular mechanism of light quality regulating adventitious root formation of tea short cutting through WGCNA analysis, which provided an innovation for "rapid seedling" of tea plants.

12.
Oncol Lett ; 23(4): 110, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35242238

RESUMEN

Matrine is a quinazoline alkaloid extracted from Sophora flavescens. The aim of the present study was to determine whether matrine can induce autophagy in the human HeLa and SiHa cervical cancer cell lines in vitro and in vivo. Cell viability assay was used to assess the suppressive effect of matrine and cisplatin on the proliferation of HeLa and SiHa cells. A total of 28 4-week-old female BALB/c nude mice were used for the in vivo study. Autophagy and protein expression were observed via transmission electron microscopy, monodansylcadaverine and immunohistochemical staining and western blotting. The inhibitory effect of matrine on the proliferation of cervical cancer cells was time- and dose-dependent. The combination of matrine and cisplatin synergistically inhibited the proliferation of cervical cancer cells in vitro and in vivo. Transmission electron microscopy showed that after the addition of matrine, numerous autophagosomes and autophagolysosomes were observable in HeLa and SiHa cells, as demonstrated by monodansylcadaverine staining. Western blotting and immunohistochemical staining showed that as the concentration of matrine increased, the expression of the autophagy marker LC3A/B-II also increased significantly in vitro and in vivo. These findings suggested that matrine inhibited the proliferation of cervical cancer cells and induced autophagy by inhibiting the Akt/mTOR signaling pathway. Thus, matrine may represented a potential candidate in combination therapy for cervical cancer as an inducer of autophagy.

13.
Analyst ; 147(5): 834-840, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35107099

RESUMEN

Thioredoxins (Trxs) and glutaredoxins (Grxs) are the two major thiol-dependent reductases, participating in many important cellular events such as defense against oxidative stress, DNA synthesis and repair. Both Trxs and Grxs have diverse disulfide-containing substrates in the cells to exert their activities, with overlapping functions. Specific methods for measuring the intracellular overall activities of Trxs and Grxs are still lacking. Here we find that TRFS-green, a disulfide containing fluorescent probe which was used to detect thioredoxin reductase (TrxR) in mammalian cells, is a substrate of bacterial Trxs and Grxs, but not a substrate of bacterial TrxR and GSH. This property made TRFS-green work as a probe to measure the overall activities of Trxs and Grxs in bacterial cells. Using various E. coli Trx or Grx null mutant strains, the contribution of different Trxs and Grxs to cellular redox regulation has been clarified, judged by the reducibility towards TRFS-green. E. coli Grx2 and Grx3 unexpectedly exhibited higher activity in reducing the disulfide probe than the other redoxins. In addition, the bacterial disulfide reductase activity was detected to be affected in the ofloxacin bactericidal process. These results show that TRFS-green may be a useful tool for investigating bacterial redox regulation and demonstrating the critical role of E. coli Grxs in maintaining the bacterial intracellular redox balance.


Asunto(s)
Colorantes Fluorescentes , Glutarredoxinas , Animales , Escherichia coli/genética , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Oxidación-Reducción , Reductasa de Tiorredoxina-Disulfuro , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
14.
Antioxidants (Basel) ; 11(2)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35204259

RESUMEN

The Trx and Grx systems, two disulfide reductase systems, play critical roles in various cell activities. There are great differences between the thiol redox systems in prokaryotes and mammals. Though fluorescent probes have been widely used to detect these systems in mammalian cells. Very few methods are available to detect rapid changes in the redox systems of prokaryotes. Here we investigated whether Fast-TRFS, a disulfide-containing fluorescent probe utilized in analysis of mammalian thioredoxin reductase, could be used to detect cellular disulfide reducibility in bacteria. Fast-TRFS exhibited good substrate qualities for both bacterial thioredoxin and GSH-glutaredoxin systems in vitro, with Trx system having higher reaction rate. Moreover, the Fast-TRFS was used to detect the disulfide reductase activity in various bacteria and redox-related gene null E. coli. Some glutaredoxin-deficient bacteria had stronger fast disulfide reducibility. The Trx system was shown to be the predominant disulfide reductase for fast disulfide reduction rather than the Grx system. These results demonstrated that Fast-TRFS is a viable probe to detect thiol-dependent disulfide reductases in bacteria. It also indicated that cellular disulfide reduction could be classified into fast and slow reaction, which are predominantly catalyzed by E. coli Trx and Grx system, respectively.

15.
World J Clin Cases ; 9(18): 4817-4822, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34222453

RESUMEN

BACKGROUND: A growing body of literature indicates that the occurrence of thalamic lesions could lead to various dysfunctions, such as somatosensory disturbances, hemiparesis, language deficits, and movement disorders. However, clinical cases describing the coexistence of these types of manifestations have not been reported. Herein, we report a patient who exhibited these rare complications secondary to thalamic hemorrhage. CASE SUMMARY: A 53-year-old right-handed man experienced sudden left hemiparesis, numbness of the left side of body, and language alterations due to an acute hemorrhage located in the right basal ganglia and thalamus 18 mo ago. Approximately 17 mo after the onset of stroke, he exhibited rare complications including dysphasia, kinetic tremor confined to the left calf, and mirror movement of the left arm which are unique and interesting, and a follow-up computed tomography scan revealed an old hemorrhagic lesion in the right thalamus and posterior limb of the internal capsule. CONCLUSION: Hypophonia may be a recognizable clinical sign of thalamus lesions; thalamus injury could cause tremor confined to the lower extremity and mimicking extremity movements.

16.
Indian J Dermatol ; 66(2): 126-131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34188266

RESUMEN

BACKGROUND: Porokeratosis (PK) is a rare, heterogeneous group of keratinization disorders with an autosomal dominant inheritance pattern and is characterized by the presence of cornoid lamella. Disseminated superficial actinic PK is the most encountered subtype and typically manifests as multiple, small annular plaques with atrophic centers and slightly raised hyperkeratotic edges. Seven associated mutations (SSH1, SART3, MVKP, MVK, MVD, FDPS, and SLC17A9) have been reported in disseminated superficial actinic PK patients. AIM: We searched a Chinese disseminated superficial porokeratosis (DSAP) family to detect the causative genes. In the meantime, we reviewed the articles reported about DSAP in Chinese population, summarizing their clinical manifestations and discussing the incidence of DSAP in Chinese population. MATERIALS AND METHODS: Sanger sequencing on the MVD and MVK genes was performed to identify the pathogenic mutation in a Chinese family with DSAP. Literature for DSAP cases reported in Chinese populations was searched by Sinomed and PubMed. RESULTS: We identified the c. 875A > G (p. Asn292Ser) mutation in the MVD gene in the family. CONCLUSIONS: That mutation was a hotspot mutation. Literature review showed that the age of onset in DSAP family was earlier than that in sporadic patients; the lesion is common in the face in Chinese population which is distinct from studies in Caucasians; ultraviolet exposure is the main aggravating factor.

17.
J Sci Food Agric ; 101(13): 5678-5687, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33792039

RESUMEN

BACKGROUND: The proper growth and development of tea plants requires moderately acidic soils and relatively low calcium levels, and excessive calcium at high pH can damage tea plant roots. To reveal the effects of calcium on the responses of tea plant to three pH levels (3.5, 5.0 and 6.5), a repeated test of two factors was designed. RESULTS: Root growth and elemental analysis indicated that excessive calcium improved the growth of tea roots at low pH conditions, whereas it did not harm the growth of tea roots under normal and high pH conditions, especially at pH 6.5. Excessive calcium antagonized the absorption and utilization of magnesium by tea plants. Gas chromatography-mass spectrometry results showed that the addition of Ca2+ resulted in the primary metabolism in roots being more active at a low pH level. By contrast, it had obvious adverse effects on the accumulation of root metabolites with high calcium treatment at normal or high pH. Differential metabolites identified using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry indicated that flavonoids demonstrated the largest number of changes, and their biosynthesis was partially enriched with excessive calcium at low and high pH conditions, whereas it was down-regulated under normal pH conditions. Kaempferol 3-(2'-rhamnosyl-6'-acetylgalactoside) 7-rhamnoside, quercetin 3-(6'-sinapoylsophorotrioside) and delphinidin 3-(3'-p-coumaroylglucoside) showed the greatest increase. The results of gene expression related to root growth and calcium regulation were consistent with root growth and root metabolism. CONCLUSION: The overall results demonstrated that high Ca concentrations further aggravate the detrimental effects of high pH to tea roots. However, it is interesting that excessive calcium reduced the harm of a low pH on tea root growth to some extent. © 2021 Society of Chemical Industry.


Asunto(s)
Calcio/metabolismo , Camellia sinensis/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Camellia sinensis/genética , Camellia sinensis/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Magnesio/metabolismo , Metabolómica , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Suelo/química
18.
BMC Genomics ; 22(1): 121, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596831

RESUMEN

BACKGROUND: Autophagy, meaning 'self-eating', is required for the degradation and recycling of cytoplasmic constituents under stressful and non-stressful conditions, which helps to maintain cellular homeostasis and delay aging and longevity in eukaryotes. To date, the functions of autophagy have been heavily studied in yeast, mammals and model plants, but few studies have focused on economically important crops, especially tea plants (Camellia sinensis). The roles played by autophagy in coping with various environmental stimuli have not been fully elucidated to date. Therefore, investigating the functions of autophagy-related genes in tea plants may help to elucidate the mechanism governing autophagy in response to stresses in woody plants. RESULTS: In this study, we identified 35 C. sinensis autophagy-related genes (CsARGs). Each CsARG is highly conserved with its homologues from other plant species, except for CsATG14. Tissue-specific expression analysis demonstrated that the abundances of CsARGs varied across different tissues, but CsATG8c/i showed a degree of tissue specificity. Under hormone and abiotic stress conditions, most CsARGs were upregulated at different time points during the treatment. In addition, the expression levels of 10 CsARGs were higher in the cold-resistant cultivar 'Longjing43' than in the cold-susceptible cultivar 'Damianbai' during the CA period; however, the expression of CsATG101 showed the opposite tendency. CONCLUSIONS: We performed a comprehensive bioinformatic and physiological analysis of CsARGs in tea plants, and these results may help to establish a foundation for further research investigating the molecular mechanisms governing autophagy in tea plant growth, development and response to stress. Meanwhile, some CsARGs could serve as putative molecular markers for the breeding of cold-resistant tea plants in future research.


Asunto(s)
Camellia sinensis , Autofagia/genética , Camellia sinensis/genética , Camellia sinensis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética ,
19.
Front Plant Sci ; 12: 807514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154201

RESUMEN

Pectin methylesterase inhibitor (PMEI) inhibits pectin methylesterase (PME) activity at post-translation level, which plays core roles in vegetative and reproductive processes and various stress responses of plants. However, the roles of PMEIs in tea plant are still undiscovered. Herein, a total of 51 CsPMEIs genes were identified from tea plant genome. CsPMEI1-4 transcripts were varied in different tea plant tissues and regulated by various treatments, including biotic and abiotic stresses, sugar treatments, cold acclimation and bud dormancy. Overexpression of CsPMEI4 slightly decreased cold tolerance of transgenic Arabidopsis associated with lower electrolyte leakage, soluble sugars contents and transcripts of many cold-induced genes as compared to wild type plants. Under long-day and short-day conditions, CsPMEI2/4 promoted early flowering phenotypes in transgenic Arabidopsis along with higher expression levels of many flowering-related genes. Moreover, overexpression of CsPMEI2/4 decreased PME activity, but increased sugars contents (sucrose, glucose, and fructose) in transgenic Arabidopsis as compared with wild type plants under short-day condition. These results indicate that CsPMEIs are widely involved in tea plant vegetative and reproductive processes, and also in various stress responses. Moreover, CsPMEI4 negatively regulated cold response, meanwhile, CsPMEI2/4 promoted early flowering of transgenic Arabidopsis via the autonomous pathway. Collectively, these results open new perspectives on the roles of PMEIs in tea plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...